Microfluidic baker's transformation device for three-dimensional rapid mixing.

نویسندگان

  • Takao Yasui
  • Yusuke Omoto
  • Keiko Osato
  • Noritada Kaji
  • Norikazu Suzuki
  • Toyohiro Naito
  • Masaki Watanabe
  • Yukihiro Okamoto
  • Manabu Tokeshi
  • Eiji Shamoto
  • Yoshinobu Baba
چکیده

We developed a new passive-type micromixer based on the baker's transformation and realized a fast mixing of a protein solution, which has lower diffusion constant. The baker's transformation is an ideal mixing method, but there is no report on the microfluidic baker's transformation (MBT), since it is required to fabricate the complicated three-dimensional (3D) structure to realize the MBT device. In this note, we successfully fabricate the MBT device by using precision diamond cutting of an oxygen-free copper substrate for the mould fabrication and PDMS replication. The MBT device with 10.4 mm mixing length enables us to achieve complete mixing of a FITC solution (D = 2.6 × 10(-10) m(2) s(-1)) within 51 ms and an IgG solution (D = 4.6 × 10(-11) m(2) s(-1)) within 306 ms. Its mixing speed is 70-fold higher for a FITC solution and 900-fold higher for an IgG solution than the mixing speed by the microchannel without MBT structures. The Péclet number to attain complete mixing in the MBT device is estimated to be 6.9 × 10(4).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confocal microscopic evaluation of mixing performance for three-dimensional microfluidic mixer.

We developed a confocal microscopic method for a quantitative evaluation of the mixing performance of a three-dimensional microfluidic mixer. We fabricated a microfluidic baker's transformation (MBT) mixer as a three-dimensional passive-type mixer for the efficient mixing of solutions. Although the MBT mixer is one type of ideal mixers, it is hard to evaluate its mixing performance, since the...

متن کامل

Three-dimensional chemical concentration maps in a microfluidic device using two-photon absorption fluorescence imaging.

Two-photon absorption fluorescence is employed within a microfluidic device to create a three-dimensional chemical concentration map for mixing uniformity characterization. This multiphoton technique images fluorescence intensity directly and provides a simple, rapid, and readily employed route to composition characterization within microfluidic systems.

متن کامل

Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels.

This letter describes an experimental test of a simple argument that predicts the scaling of chaotic mixing in a droplet moving through a winding microfluidic channel. Previously, scaling arguments for chaotic mixing have been described for a flow that reduces striation length by stretching, folding, and reorienting the fluid in a manner similar to that of the baker's transformation. The experi...

متن کامل

Foundations of chaotic mixing 939

The simplest mixing problem corresponds to the mixing of a fluid with itself; this case provides a foundation on which the subject rests. The objective here is to study mixing independently of the mechanisms used to create the motion and review elements of theory focusing mostly on mathematical foundations and minimal models. The flows under consideration will be of two types: two-dimensional (...

متن کامل

Foundations of chaotic mixing.

The simplest mixing problem corresponds to the mixing of a fluid with itself; this case provides a foundation on which the subject rests. The objective here is to study mixing independently of the mechanisms used to create the motion and review elements of theory focusing mostly on mathematical foundations and minimal models. The flows under consideration will be of two types: two-dimensional (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 11 19  شماره 

صفحات  -

تاریخ انتشار 2011